Analysis, pretreatment and enzymatic saccharification of different fractions of Scots pine
نویسندگان
چکیده
BACKGROUND Forestry residues consisting of softwood are a major lignocellulosic resource for production of liquid biofuels. Scots pine, a commercially important forest tree, was fractionated into seven fractions of chips: juvenile heartwood, mature heartwood, juvenile sapwood, mature sapwood, bark, top parts, and knotwood. The different fractions were characterized analytically with regard to chemical composition and susceptibility to dilute-acid pretreatment and enzymatic saccharification. RESULTS All fractions were characterized by a high glucan content (38-43%) and a high content of other carbohydrates (11-14% mannan, 2-4% galactan) that generate easily convertible hexose sugars, and by a low content of inorganic material (0.2-0.9% ash). The lignin content was relatively uniform (27-32%) and the syringyl-guaiacyl ratio of the different fractions were within the range 0.021-0.025. The knotwood had a high content of extractives (9%) compared to the other fractions. The effects of pretreatment and enzymatic saccharification were relatively similar, but without pretreatment the bark fraction was considerably more susceptible to enzymatic saccharification. CONCLUSIONS Since sawn timber is a main product from softwood species such as Scots pine, it is an important issue whether different parts of the tree are equally suitable for bioconversion processes. The investigation shows that bioconversion of Scots pine is facilitated by that most of the different fractions exhibit relatively similar properties with regard to chemical composition and susceptibility to techniques used for bioconversion of woody biomass.
منابع مشابه
Pretreatment and enzymatic saccharification of lignocellulose: Formation and effects of pseudolignin
Production of advanced biofuels, green chemicals, and bio-based materials from renewable lignocellulosic biomass would contribute to decreased dependence on fossil resources and to sustainable development. The overall aim of the investigations was to explore how preprocessing and pretreatment technologies affected the chemical composition of cellulosic materials and their susceptibility to enzy...
متن کاملCorrelating physical changes and enhanced enzymatic saccharification of pine flour pretreated by N-methylmorpholine-N-oxide.
Pretreatment of lignocellulosic biomass by N-methylmorpholine-N-oxide (NMMO), a solvent used in the textile industry to dissolve cellulose for production of regenerated cellulose fibers, was observed to enhance significantly enzymatic saccharification and fermentation. The enhancement was speculated to have been caused by reduced cellulose crystallinity after dissolution and precipitation proce...
متن کاملLignosulfonate and elevated pH can enhance enzymatic saccharification of lignocelluloses
UNLABELLED BACKGROUND Nonspecific (nonproductive) binding (adsorption) of cellulase by lignin has been identified as a key barrier to reduce cellulase loading for economical sugar and biofuel production from lignocellulosic biomass. Sulfite Pretreatment to Overcome Recalcitrance of Lignocelluloses (SPORL) is a relatively new process, but demonstrated robust performance for sugar and biofuel ...
متن کاملEnzymatic Hydrolysis of Biomass: Effects of Crystallinity, Particle Size, and Lignin Removal
Enzymatic hydrolysis of cellulose in plant and wood cell walls is expected to be affected by its chemical composition as well as structural and morphological features. In the present study, different crystallinity cellulose samples and varying size fractionated loblolly pine wood cell wall particles were hydrolyzed using a mixture of Celluclast and Novozyme 188. In pure cellulose samples of Wha...
متن کاملEffect of Lignin on Enzymatic Saccharification of Hardwood after Green Liquor and Sulfuric Acid Pretreatments
Red maple, sweet gum, trembling aspen, red alder, and Eucalyptus globulus samples were pretreated with dilute sulfuric acid and green liquor before enzymatic saccharification. Substrates showed different levels of delignification and sugar recovery, depending on the applied pretreatments and the syringaldehyde/vanillin ratio (S/V). Three major conclusions were drawn in this research. First, lig...
متن کامل